
Congenital valvular heart disease

Dr Edgar Tay Director of Structural Heart Service National University Heart Centre Echo Singapore 2018

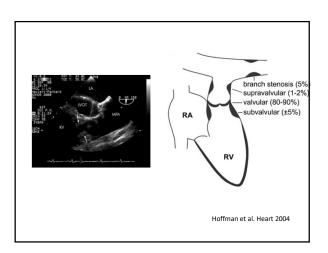
Classification of major diseases that affect the pulmonary valve			
Pulmonary atresia	Pulmonary stenosis	Pulmonary regurgitation	Mixed PS and PR
With intact ventricular septum a/w: • hypoplastic RV and tricuspid valve • ASD • Coronary anomalies	Valvular: Dome shaped/Dysplastic (part of Noonans) Bicuspid/Quadricuspid Acquired	Physiologic: trivial to mild	Carcinoid
With VSD (a form of tetralogy of fallot associated with MAPCAs	Supravalvular: Congenital a/w: A) Alagilie syndrome B) Keutel syndrome C) Congenital rubella D) TOF E) William syndrome Acquired /latrogenic: Takayasu	Primary: Some forms of TOF (eg Absent pulm valve) Acquired causes Post operative/Post valvuloplasty	Rheumatic
	Subvalvular: Primary infundibular stenosiss DCRV Secondary infundibular hypertrophy	Acquired: PAH	Infectious/iatrogenic

Focus on the pulmonary valve

- Pulmonary valve
 - Stenosis

Г

Regurgitation


Valvular pulmonary stenosis

- 7% of children born with CHD
- Associations with dilated PA
- Noonans: Hypoplastic pulmonary annulus and supravalve narrowing

Differentials

- Infundibular stenosis (This is associated with TOFs)
- Should be suspected when there is increased RV thickness and dynamic late peaking doppler systolic signals in subvalvular region
- Also different from Double Chamber RV: Here a fibromuscular collar develops between the RV inflow and RV outflow tract. Short Axis view probably best to show this (with RVOT in plane)
- Supravalvular stenosis (uncommon and associated with Willams Syndrome/TOF, congenital Rubella syndrome

King et al. Curr Cardio Rep 2015

Echocardiographic assessment

- Morphology of valve
- Hemodynamics
- Right ventricle

Morphology of valve

- Thickening
- Commisural fusion
- Common morphologies Bicuspid, dome shaped(40-60%) or dysplastic (20%)
- Annular size

Arain et al. Ann Paed cardiol 2012 Kovalchin et al JACC 1997

Hemodynamics

- Assessment of pulm valve from parasternal short axis image or apical four chamber with anterior tilt (CW)
- Or TR velocity
- Good correlation with peak to peak gradients on invasive catheterization

Cantinotti et al. Echocardiography 2017

Severity of Pulmonary Stenosis		
Mild	Peak gradient <36mmHg, peak velocity <3m/s)	
Moderate	Peak Gradient 36-64mmHg, peak velocity 3-4m/s	
Severe	Peak gradient > 64mmHg, Peak velocity > 4m/s; Mean gradient >35mmHg	
RVSP assessed by TR velocity		
	Adapted from Stout et al. Circulation 2018	

Right ventricle

- Right ventricular hypertrophy
- Assessment of right ventricular systolic or diastolic function (TAPSE/TDI) (differences in adult and children)

Koestenberger et al. Eur heart J Cardiovasc Imaging 2014 Koestenberger et al. Am J Cardiol 2012

Frequency of Routine F/U and testing	Physiological Stage A* (mo)	Physiological Stage B* (mo)	Physiological Stage C* (mo)	Physiological Stage D* (m
Clinical review	36-60	24	6-12	2-6
ECG	36-60	24	12	12
TTE	36-60	24	12	12
Exercise test	As needed	24	24	12
		Adaj 2015	oted from Stout e	t al. Circulation

Management

- Those with mild PS have a very good natural history and intervention usually unnecessary
- Mod/severe PS may require intervention:
 Surgical valvotomy
 - Balloon valvuloplasty
 - Indications: Peak transvalvular gradient >60mmHg (or >/=50mmHg with symptoms; or mean of 40mmHg or >30mmHg with symptoms)

Pulmonary regurgitation

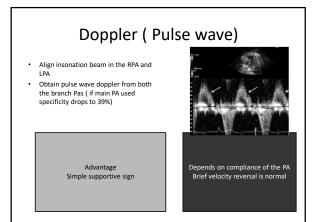
- Important in ACHD due to significant patients who have survived to adulthood following TOF repair/those who have had balloon valvuloplasty
- Severe PR is associated with RV dysfunction, arrhythmias, heart failure and mortality
- Trace to mild PR is common and probably has minimal hemodynamic consequence

Anatomic considerations

- Semilunar with 3 cusps, thinner than aortic valve and its plane is orthogonal to AV
- Lack fibrous continuity with tricuspid valve
- Anterior structure so more difficult to image
- Limited windows for both TTE and TEE

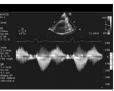
Etiology

- Can occur in native congenital heart disease or following intervention (eg TOF repair or balloon pulmonary valvuloplasty for PS)
- Differentials (aquired disease generally rare), functional PR usually smaller in volume and leaflets normal


Morphology

- Bicuspid/Quadricuspid (no. of leaflets)
- Doming/Prolapse (motion)
- Hypoplastic, dysplastic or absence (Structure)

Echocardiographic assessment of valve hemodynamics


- Colour flow doppler
- Pulsed and continous wave doppler
- Quantitative doppler

Parameters	Mild	Moderate	Severe
Qualitative			
Pulm valve morphology			
Colour flow PR jet width	Small, usually <10mm in jet length with narrow origin	Intermediate	Large with wide origin, may be brief in duration
Reversal flow in pulm arteries			
CW signal of PR jet	Faint/slow deceleration	Dense/variable	Dense with steep deceleration, early flow termination
Pulm vs aortic flow by PW	Normal/slightly increased		
Semiquantitative			
Pressure half time	Not defined	Not defined	<100ms
Quantitative			
ERO mm ²	Not defined	Not defined	Not defined
R Vol (ml)	Not defined	Not defined	Not defined
RV size			

Colour Doppler (Continuous wave)

- Align insonation beam with the flow
- PSAx view or subcostal view

- Advantages
- Simple
 Density is proportional to the number of RBC reflecting the signal
 Faint or incomplete jet mild PR

Qualitative Central jets may appear more dense then eccentric jets Difficult to differentiate moderate from severe

Vena contracta

- .
- Zoom the parasternal short axis/subcostal view Visualize proximal flow convergence distal jet and narrow neck in a single view Moacuro in diactolo
- Measure in diastole below PV

Advantages

Surrogate for ERO Independence of flow rate and : driving pressure for a fixed orifice Less dependence on technical factors

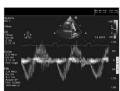
Difficult with multiple jets Eccentric jets Not well validated

Vena contracta width to annular diameter ratio Zoom the parasternal short axis/subcostal view Visualize proximal flow convergence distal jet and narrow neck in a single view Measure in diastole below PV Underestimates in eccentric jets Overestimates in central jets PR jet may expand unpredictably below PV Requires clear assessment of Advantages Simple and sensitive screen for PR Rapid quantitative assessment

Pressure half time Align insonation beam with the flow Parasternal short axis or subcostal view

Advantages Simple

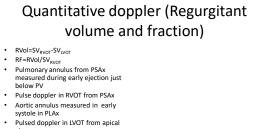
.


Specific sign of pressure equalization Values<100ms consistent with severe PR ŀ

Poor alignment may result in eccentric jets showing PHT<100ms Affected by RV and PA pressure differences (eg diastolic RV dysfunction)

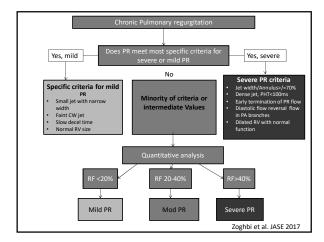
Silversides et al. JASE 2003

PR index

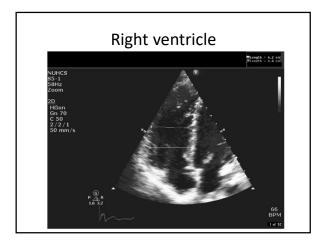

- Align insonation beam with the flow • Parasternal Short Axis or Subcostal view
- Ensure complete forward and regurgitant flow spectral doppler
- <0.77 correlates well with severe PR on CMR .

- Advantages Uses combination of PR duration
- and diastolic duration Accounts for pressure difference between PA and RV

Li Wei et al. Am Heart J 2004



. views


> Advantages Quantitative, valid with multiple jets and eccentric jets

RVOT diameter not always easily measured ERO not validated If AR present may need to use Mitral annulus Little experience

Right ventricle

- Right ventricle dilatation (global or regional)
 - Mild PR (usually RV normal in size)
 - Acute severe PR (also normal in size)
 - "normal" = Mid RV dimension \leq 33mm,RVEDA \leq 28cm², RVESA \leq 16cm²
- Right ventricular function(systolic/diastolic):
 - FAC (Low to modest)
 - TAPSE (weak correlation)
 - TDI (fair when infundibular EF better)
 - Diastolic function few studies

Valente et al. JASE 2014

Conclusion

- The pulmonary valve has been neglected but is becoming increasingly important due to the increase in patients with ACHD and procedures done
- Most pulmonary valve diseases are of congenital etiology
- Complete assessment of the pulmonary valve requires the evaluation and reporting of its morphology, hemodynamics as well as its impact on the right ventricle