

LV Diastolic Function (LVDF) In the Young and Old

- Introduction
- How does age affect LVDF?
- When does LVDF become abnormal? Transition to HFPEF?
- Can we prevent LVDD?

LV Diastolic Dysfunction (LVDD)

- Abnormality of LV relaxation, distensibility and filling irrespective of LVEF or symptoms
- Propensity of LV to develop ↑ filling pressure (LVFP or LVEDP)
- LVFP ≠ LVDD
 - ≠ LAP or PCWP

Assessing LVDF

- Active LV relaxation: Analysis of pressure decline (tau)
- Passive LV filling/chamber stiffness (effective operating compliance): Analysis of pressurevolume curves (stiffness constant)

LVDF by Echo: "Post-Truth"?

- Indicates ↑ LVFP, not myocardial abnormality or LVEDPVR: E, E/A
- Load dependence: nearly all pseudonormalize
- Composite indexes ↑ measurement error: E/e'

LVDF in Elderly: ARIC

- LVDF assessed in 5801 elderly subjects (mean age 76, range 67–90 yrs; 42% male)
- 10th and 90th percentile limits for "normal LVDF" determined in 401 subjects free of CVD and CVRF
 Outcome: incident HF hosp or death

4.6 5.2	8.1 9.9
5.2	9.9
= -	
7.2	14.4
6.1	12.7
15.2	30.2
	6.1 15.2

Table 4 LV relaxation, filling pressures and 2D and Doppler findings according to LV diastolic function						
	Normal	Grade I	Grade II	Grade III		
LV relaxation	Normal	Impaired	Impaired	Impaired		
LAP	Normal	Low or normal	Elevated	Elevated		
Mitral E/A ratio	≥0.8	≤0.8	>0.8 to <2	>2		
Average E/e' ratio	<10	<10	10–14	>14		
Peak TR velocity (m/sec)	<2.8	<2.8	>2.8	>2.8		
LA volume index	Normal	Normal or increased	Increased	Increased		

2016 ASE Guidelines: Caveats

- Expert consensus, not fully validated
- Confusion as to which algorithm to use
- Indexes often provide conflicting "indeterminate" info
- Not pure diastolic index: LAVI, PASP
- Affected by non-diastolic factors: PASP, LAVI
- Not routinely applicable in many situations: AF, VHD, etc

Left Atrial Volume

RV

RA

LV

- LA enlargement is not index of instantaneous pressure

 takes time to occur
- persists long after LAP↓
- LAE may be present in
 - athletes
 - bradycardia
 - anemia
 - atrial arrhythmias
 - MV disease

3 Variable	Patients with Diastolic Heart Failure (N=47)	Controls (N=10)	P Value	
Body-surface area (m ²)	2.2±0.25	2.1±0.18	0.31	
Heart rate (beats/min)	71±11	73±13	0.81	
Volume at P _{min} (ml)	51±13	55±7	0.31	
Volume at PpreA (ml)	75±15	88±8	0.03	шпну
2 End-diastolic volume (ml)	103±22	115±9	0.01	
P _{min} (mm Hg)	12±6	4±1	< 0.001	
PpreA (mm Hg)	16±5	6±2	< 0.001	
End-diastolic pressure (m	m Hg) 25±6	8±2	< 0.001	
au (msec)	59±14	35±10	0.01	
P _{sr} (mm Hg)	7±5	0	< 0.001	
Corrected minimal diastol pressure (mm Hg)	ic 5±2	4±1	0.10	n- mHg
Measured stiffness Curve-fitting constant Stiffness constant	6.5±4.3 0.02±0.01	2.3±0.8 0.01±0.01	0.003 0.01	
Corrected stiffness Curve-fitting constant	1.5±1.1	2.3±0.8	0.03	120

Conclusions

- LVDF is a continuum, with evolution from early age
- Despite authoritative guidelines, distinction between normal and abnormal LVDF is often unclear
- Pitfalls and limitations of LVDF indexes should be recognized; newer ones e.g. PALS may be useful in resolving "indeterminate" LVDF
- Prevention of LVDD seems possible by risk factor intervention but needs verification in larger studies.