

■通中文大学展学派 Faculty of Medicine The Chinese University of Hong Kong

Endocardial Border Placement

- Algorithm detects both inner and outer myocardial borders
- Inner border is located at blood/tissue interface
- Outer border is located at compacted myocardium interface
- The "preferred" default slider position can be set by the users

	CMR mean± SD	Heart model		p Value	Bias	LOA	r
		Sliders	$Mean \pm SD$				
EDV (ml)	168.5 ± 72.1	70/30	$160.2{\pm}64.4$	0.6	- 14.4	65.5	0.89
		70/40	155.6 ± 65.9	0.46	- 21.8	78.3	0.84
		74/68	$156.7 {\pm}~65.8$	0.5	- 5.8 🔺	62.8	0.91
ESV (ml)	88.5 ± 60.5	70/30	$80.8 {\pm}~55.9$	0.6	- 9.2	45.8	0.92
		70/40	81.9 ± 54.4	0.64	- 12.9	63.8	0.86
		74/68	90.5 ± 60.1	0.9	9 🔺	53.9	0.90
EF %	49.7 ± 16	70/30	54.5 ± 13.8	0.19	2.5	13.2	0.90
		70/40	52.5 ± 13	0.42	1.7	14.7	0.89
		74/68	46.3 ± 12.6	0.31	- 4.9 🔺	11.7	0.94

	3DE mean± SD	Heart model		p Value	Bias	LOA	r
		Sliders	Mean± SD	-			
EDV (ml)	104.6 ± 48.4	70/30	160.2 ± 64.4	< 0.0001	52.1	59.6	0.87
		70/40	155.6 ± 65.9	< 0.0001	49.1	65.9	0.85
		74/68	156.7 ± 65.8	< 0.0001	53.7	60.7	0.89
ESV (ml)	53.9 ± 42.9	70/30	80.8 ± 55.9	0.003	16.3	28.6	0.92
		70/40	81.9 ± 54.4	0.002	18.3	42.1	0.87
		74/68	90.5 ± 60.1	0.0003	30.9	28.8	0.94
EF %	53.7 ± 15.7	70/30	54.5 ± 13.8	0.7	0.7	13.7	0.88
		70/40	52.5 ± 13	0.6	- 1.5	15.2	0.86
		74/68	46.3±12.6	0.003	-7.6	13	0.91

What HM slider settings should be used?

- Somewhat depends on whether the "CMR" accuracy or the "Echo" accuracy is preferred
- Ideally, CMR and echo should give the same values
- CMR is the gold standardEchocardiographers are more
- familiar with echo volume/EF
- No guideline recommendations so far

Faculty of Medicine

Conclusion

- Auto LV volume, EF, strain, and LA volume by echo is now technical feasible thanks to advances in machine learning
- Still underestimate volume compare to MRI
- Source of error: border placement
- Accurate in LVEF
- Reproducibility is excellent because of the convergent algorithm in the latest automation program
- · Time-saving
- Advances in deep learning will likely bring automation to various aspects of echo interpretation in the next 5 years

Faculty of Medicine

