

INTERVENTIONAL IMAGING IN HCM

Role of imaging in septal ethanol ablation (SEA) - intra-procedural contrast TTE (Class I indication)

Role of imaging in surgical myectomy (SM)

- pre-operative assessment
- intra-operative guidance (Class I indication)
- identification of complications

NHS Royal Papw

PRE-PROCEDURAL PATIENT SELECTION				
LVOTO ≥ NYHA Class III/IV despit	LVOTO ≥50mmHg NYHA Class III/IV despite optimal medical therapy			
SEPTAL ETHANOL ABLATION	SURGICAL MYECTOMY			
Septal thickness 16mm-25mm	Septal thickness >16mm			
Obstruction - level of LVOT	Obstruction - LVOT/papillary muscles			
SAM-related mitral regurgitation	Intrinsic mitral valve pathology			
No intrinsic mitral valve pathology	Three-vessel CAD			
If co-existent CAD – amenable to PCI	Other co-existent valve disease			
Ger I Wast Festerer Inspatio	Royal Papworth Hospital Nits Youndston Trust			

SEPTAL ETHANOL ABLATION

- Contrast echo essential for the guidance and monitoring of SEA
- Direct visualisation of the areas of myocardium supplied by the septal perforator arteries

TARGET AREA

- Hypertrophied basal septumAdjacent to SAM-septal
 - contact point
- Adjacent to area of maximal flow acceleration on CFD

Royal Papwort

- Identify perfusion of myocardial segments remote from the targeted areas
- Up to 25% of patients demonstrate extraseptal perfusion
- Tends to occur if septal perforator is large (>2.0mm)

**Images in multiple views to identify those remote areas

-А4СН, А5СН, А2СН, А3СН

-PLAX, PSAX, Subcostal

**7-11% of all procedures are altered based on information obtained from MCE

BENEFITS OF CONTRAST ECHO IN SEA

- \downarrow intervention times
- ↓ethanol doses
- ↓rate of PPM-implant post-procedure
- ↑ procedural success rate (LVOT gradient reduction >50%)

Tariable	Wah 10/2 (N + 131/132)	No M/2 (N = 28(36)	Pula
Mazieman creatine kinase-MB rise (U/L)	65 ± 32	96±62	<001
DDD-Pacemaker implantation rate (%)	SN	17%	.05
Follow-up success rate (LVOTG reduction >50%)	945	64N	<001
LVOTG (rest) at 3 months (mm Hg)	9 ± 17	I : 34	<01

NHS

Faber L et al. JASE 2000;13:1074-1079

MITRAL VALVE ASSESSMENT

Mitral regurgitation in obstructive HCM - classically posteriorly-directed

- occurs in mid- to late systole
- secondary to SAM

A non-posterior jet of MR suggests intrinsic mitral valve disease

MITRAL VALVE ASSESSMENT

Structural abnormalities of the mitral valve are common <u>Elongated mitral valve leaflets</u> <u>Degenerative changes</u> - mitral annular calcification <u>Leaflet trauma</u> <u>Myxomatous mitral leaflets</u> <u>Papillary muscle abnormalities</u> - hypertrophied PM's - direct insertion of PM into AMVL <u>Restrictive chordal and leaflet abnormalities</u> - shortened calcified chordae - abnormal chordal insertions - thickened/tethered leaflets

MITRAL VALVE ASSESSMENT

ANTERIOR MITRAL VALVE LEAFLET LENGTH

ME-120 view, in diastole Elongated leaflets result in displacement of the SAM-septal contact point distally – extended muscular resection

Potential for mitral-septal contact even after myectomy - \approx 35mm \rightarrow consider plication, especially if MWTH <20mm

Maron MS et al. Circulation 2011;124:40-47

ME-3CH-VIEW, END-DIASTOLE

- 1 = maximal wall thickness 2 = distance maximal wall
- 4 = distance distal narrowing to

POST-OPERATIVE ASSESSMENT - ADEQUACY OF RESECTION

Residual LVOT obstruction and SAM

- Morphology of LVOT in 2D
- Residual thickness of basal septum
- Assessment of LVOT by color Doppler
- Laminar or turbulent flow Residual mitral regurgitation

POST-OPERATIVE ASSESSMENT - ADEQUACY OF RESECTION

LVOT-gradient in deep transgastric view

- gradient >20mmHg after CPB
 → results in significant
 remaining gradient in the longterm
- provocative maneuvers (induce VPBs, nitro, isoproterenol)

POST-OPERATIVE ASSESSMENT – COMPLICATIONS

- Ventricular septal defect
- resection too deep
- systolic flow into the RV
- <u>Septal perforator flow</u>
- denuded septal vessels
- flow into the LVOT in diastole
- Aortic valve (?significant AR)

CONCLUSIONS

Imaging plays a crucial role in patient selection, procedural planning, and optimising outcomes

Intraprocedural imaging minimises the risk of complications, and allows early identification of suboptimal results/complications

Imaging identifies of high-risk features and poor prognostic markers to tailor appropriate therapy

NHS Royal Papwor